高炉スラグ微粉末を高含有したコンクリートの収縮ひび割れ抵抗性に関する研究

Study on Shrinkage Crack Resistance Mechanism of Concrete with High Blast-Furnace Slag Content

平	田	真佑子	百	瀬	晴	基	閑	田	徹	志
			今	本	啓	_1)	清	原	千	鶴 $^{1)}$

要 約

高炉スラグ微粉末を高含有したコンクリートは、環境負荷低減に大きく寄与することから RC 造建築構造 物への適用が期待されている。しかしながら、同コンクリートは環境温度が高い場合に普通コンクリートと 比較して収縮ひび割れ抵抗性が低下することが懸念されている。本報では、収縮ひび割れ抵抗性の向上を目 的として SO3 量を高めた同コンクリートの、環境温度 20℃および 30℃における収縮ひび割れ抵抗性および これに関わる材料特性を把握することを目的とし、拘束ひび割れ試験、自由収縮試験、強度試験およびクリ ープ試験を実施した。実験の結果、20℃と比較して 30℃の高温時には同コンクリートの収縮ひび割れ抵抗性 が低下するものの、普通コンクリートと比較して同抵抗性は高いこと、また初期に水中養生を行うことで同 抵抗性が大きく向上することが実験的に明らかとなった。

目 次

I. はじめに

- Ⅱ. 実験概要
- Ⅲ. 力学特性実験結果
- Ⅳ. 拘束ひび割れ実験結果
- V. おわりに
- I. はじめに

RC 造建築構造物の低炭素化に向けて,高炉スラグ微粉末 (以下 BFS)を用いたコンクリートの利用が期待されている ことから,BFSを結合材の60~70%使用した高炉セメントC 種相当のECM コンクリート(以下,ECM)を開発し,普及 拡大を進めてきた¹⁾。ECM は普通コンクリートと比較して CO2排出量を6割以上削減できる一方で,中性化抵抗性や収 縮ひび割れ抵抗性が普通コンクリートに劣る懸念があり,現 状は地下躯体への適用に限られている。

これまでに高炉セメント B 種を用いたコンクリートにお いて,環境温度が高い場合に収縮ひび割れ抵抗性が低下する こと,また水中養生に準じる方法で養生を行うことにより同 抵抗性が改善することを報告しているが²⁾, ECM の同抵抗性 は未だ明らかになっておらず,上部躯体への利用拡大に向け, 同抵抗性の定量的な評価および向上が求められる。

本研究では, ECM を対象として, 環境温度 20℃および 30℃ における収縮ひび割れ抵抗性を, ひび割れ発生材齢によって 評価するとともに, 応力解析に必要となる材料特性について 検討することを目的とし実験を実施した。併せて, 同抵抗性 の向上を期待して, 初期における水中養生の効果も検討した。

Ⅱ. 実験概要

1. 実験要因および水準

実験要因および水準を Table 1 に示す。使用するコンクリ ートは, ECM に加え,比較対象となる普通コンクリート(以 下 N)および高炉 B 種コンクリート(以下 BB)の3水準と した。また,環境温度は20℃および30℃の2水準とし実験 を行った。

2. 使用材料および調合

使用材料一覧を Table 2 に, 調合表一覧を Table 3 に示す。 結合材として普通ポルトランドセメントと BFS を使用した。 BB は BFS 混合率を結合材の 42%とし, 一般的に使用されて いる SO3 量が 2.0%の BFS を用い, 結合材中の SO3 量を 2.1% とした。ECM は BFS 混合率を結合材の 68%とし, 初期強度 増進や収縮抑制を目的として SO3 量を高めた BFS を用い,

1) 東京理科大学 Tokyo University of Science

キーワード: コンクリート,高炉スラグ微粉末,高炉セメント,収縮,ひび割れ,クリープ **Keywords**: concrete, blast furnace slag, blast furnace slag cement, shrinkage, crack, creep 結合材中の SO3 量を 3.0%とした。水結合材比は 50.0%,単位 水量は 170kg/m³とし,目標スランプは 18.0±2.5cm,目標空 気量は 4.5±1.5%の調合とした。

3. 実験方法

(1) 力学特性実験

圧縮クリープ試験体の詳細を Fig.1 に示す。埋め込みひず みゲージ KM-120-120-H2-11 (㈱共和電業製)を埋設した 100×200mmの載荷試験体および無載荷試験体を作製し,圧 縮クリープ試験(JISA1157)を行った。載荷試験体の載荷材齢 は、後述の拘束ひび割れ試験の開始材齢である材齢7日とし、

	(Experin	nental Parame	ters and Levels)
	実験	実験要因	水準
	全体	コンクリート 種類	N, BB, ECM
		環境温度	20, 30°C
力学特性	圧縮強度試験 静弾性係数試験	学校++**	拘束ひび割れ実験と同一養生: 3日,7日,28日,91日 封かん:91日
実験	割裂引張 強度試験	武 過失 化 图 图	拘束ひび割れ実験と同一養生: 7,28,91日 封かん:91日
拘束(ひび割れ実験	養生方法 材齢7日以前	封かん⇒気乾,水中⇒気乾

Table 1 実験要因および水準 Experimental Parameters and Levels

使用材料一覧(Materials Used of Concrete) Table 2 記号 材料 項目 物性値 普通ポルトランドセメント セメント OPC 密度 3.16g/cm3 SO3 量 2.03% 高炉スラグ微粉末 BFS 1 比表面積 4410cm²/g (BB用) 密度 2.89g/cm3 混和材 SO3量 3.50% 高炉スラグ微粉末 BFS 2 比表面積 4480cm²/g (ECM 用) 密度 2.90g/cm3 奥多摩産 硬質砂岩砕砂 表乾密度 2.62g/cm3 S1細骨材 君津産 砂 表乾密度 2.60g/cm3 S2 表乾密度 2.65g/cm 粗骨材 奥多摩産 硬質砂岩砕石 G 密度 1.00g/cm3 W 上水道水 水 混和剤 高性能 AE 減水剤 Ad

Table 3 調合表一覧(Mix Proportion)														
	W/D	BFS	結合材	a/a	単位量(kg/m³)									
記号	w/b (%)	混合率 (%)	中の SO3量	s/a (%)	W	OPC	BFS1	BFS2	S 1	S2	G			
N-20S N-30S	50	_	2.2	47.2	170	340	_	—	585	251	946			
BB-30S	50	42	2.1	46.9	170	197	143	_	577	247	946			
ECM-20S ECM-20W ECM-30S ECM-30W	50	68	3.0	46.7	170	109	_	231	572	245	946			

載荷荷重は載荷材齢時に試験した圧縮強度の1/3とした。

(2) 拘束ひび割れ実験

拘束ひび割れ実験の要因および水準を Table 4 に,自由収 縮試験体および拘束ひび割れ試験体の詳細を Fig.2 に示す。 自由収縮試験体は,100×100×400mm の試験体を 1 水準に つき2体作製し,埋め込みひずみゲージ KM-100BT (㈱東京 測器研究所製)を埋設した。拘束ひび割れ試験体は,文献³⁾ で提案されているコンクリートの収縮ひび割れ評価試験方 法に準拠し,100×100×1100mm の試験体を1 水準につき2 体作製した。鉄筋は丸鋼 φ 32mm とし,定着部を M33 相当の ネジ加工とし,試験区間の中央部で対称に2 枚のひずみゲー ジを貼付した。

いずれの試験体も、材齢1日にて脱型後、封かん養生もし くは水中養生とし、材齢7日の時点で60%RHの2面気乾養 生とした。試験体の底面および打設面にアルミテープを貼付 し、上下面を封かん養生とすることで2面気乾養生とした。

Table 4 拘束ひび割れ実験の要因および水準 (Parameters and Levels in Restrained Cracking Experiments)

Ⅲ. 力学特性実験結果

1. 強度試験結果

(1) 圧縮強度

力学特性実験結果の一覧を Table 5 に,拘束ひび割れ実験 と同一養生における 20℃の圧縮強度試験結果を Fig.3 に, 30℃の同試験結果を Fig.4 に,封かん養生における同試験結 果を Fig.5 に示す。材齢は温度の影響を等価な材齢に換算で きる有効材齢に整理し⁴,実線で示した日本建築学会「高炉 セメントまたは高炉スラグ微粉末を用いた鉄筋コンクリー ト造建築物の設計・施工指針(案)」の強度発現予測式(解 4.3.4 式)⁵と比較した。なお,予測式内の 28 日圧縮強度は, 有効材齢 28 日の圧縮強度を実験結果より求めて使用した。 Fig.3 および Fig.4 において,材齢 28 日以降の強度の伸びが 小さい結果となったが,Fig.5 の封かん養生における圧縮強 度は,予測式と同程度の勾配で強度増進する結果であり,気 乾養生における材齢 28 日以降の強度停滞は乾燥によるもの と考えられる。材齢 91 日時点における N に対する圧縮強度 比を Fig.6 に示す。20°Cにおいて, ECM-20S の圧縮強度は N の約 0.8 倍, ECM-20W は N と同等であり,初期水中養生に よる強度増進が確認できた。30°Cにおいては, ECM-30S の圧 縮強度は N の約 0.85 倍, BB 約 0.9 倍であり, BB より強度 が低下したのは BFS の増加によるものと考えられる。ECM-30W は N の 0.9 倍の結果となった。20°Cと比較して 30°Cで は初期水中養生による効果がやや低減したが,いずれの環境 温度においても初期水中養生により圧縮強度が向上する結 果となった。

(2)静弾性係数

圧縮強度と静弾性係数の関係を Fig.7 に示す。既存の予測 式⁵⁾では,BBの静弾性係数はNよりも小さいが,本実験に おいて ECM の静弾性係数はNおよび BB と大きな差はない 結果となった。

(3) 割裂引張強度

圧縮強度と割裂引張強度の関係を Fig.8 に示す。本実験の 割裂引張強度は,既存の予測式のと比べて若干大きいものの,

Table 5 万字特性実験結果の一見(Test Results of Mechanical Properties)																
					拘束ひび割れ試験同一養生								封かん養生			
記문	環境	圧縮強度					静弹性	生係数		割	裂引張強	渡	圧縮	静弾性	割裂	
	温度		(N/n	nm ²)			$(\times 10^{3} \text{N/mm}^{2})$				(N/mm^2)		強度	係数	引張強度	
		3日	7日	28 日	91 日	3日	7日	28 日	91 日	7日	28 日	91 日	91 日	91 日	91 日	
N-20S		25.3	36.2	45.5	44.6	24.0	28.2	28.2	27.5	3.3	3.8	3.4	54.9	33.8	4.0	
ECM-20S	20°C	14.2	23.7	31.7	34.9	20.3	21.8	24.5	22.8	2.2	3.0	3.1	40.9	31.3	3.5	
ECM-20W		18.2	27.8	41.3	45.1	23.2	25.8	28.0	28.6	2.8	3.6	3.9	44.1	32.2	3.7	
N-30S		31.5	38.2	47.2	45.1	26.9	29.4	28.5	28.1	3.4	3.9	3.7	56.1	34.2	4.1	
BB-30S	30°C	26.9	36.6	45.6	43.7	25.4	28.3	27.4	25.6	3.4	3.9	3.6	53.3	35.2	3.9	
ECM-30S		24.0	30.3	38.3	38.1	26.8	27.9	25.0	23.6	3.1	3.6	3.4	42.4	32.4	3./	
ECM-30W		21.5	30.2	39.0	40.0	25.4	28.9	20.9	24.3	3.0	3.3	3.0	45.2	34.2	4.1	
$ \begin{array}{c} 80 \\ 70 \\ \hline \\ 60 \\ \hline \\ f_{c}(t_{v}) = 455 \text{sep}(0.31[1 - [28/(t_{v})]^{0.5}]) \\ \hline \\ 40 \\ \hline \\ 30 \\ \hline \\ 20 \\ 10 \\ 0 \\ \hline \\ 1 \\ 10 \\ \hline \\ 1 \\ 10 \\ \hline \\ 10 \\ \hline \\ 1 \\ 10 \\ \hline \\ \\ 10 \\ \hline \\ 1 \\ 10 \\ \hline \\ \\ 10 \\ \hline \\ \\ 1 \\ 10 \\ \hline \\ \\ 10 \\ \hline \\ \\ 1 \\ 10 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$))) → → BB-30S →						80 70 AU式 N(30°C): $f(L)=$ 47.0exp(0.31[1-[28/(t _n -0.5]] ^{0.5}]) 10 10 10 10 10 10 10 10 10 10				
(Result of Co	F1; (Res 50	g.4) 庄 ult of C	帕加皮 ompress	武 映 結 ジ sive Stre	ength at :	30°C)	rig.3)二、州日: (Resul	由反映(t of Comp at Sealed (bressive S Curing)	trength					
型 型 型 型 型 で 電 型 の も の う の の の も し う の も し も う ら の も う ら し る う の も う し う う の も う も う ら し し う ら の も う ら の ら し し う ら ら ら ら ら ら ら ら ら ら ら ら ら						45 A BB·30S ECM-20S ECM-30S ECM-20S ECM-30S ECM-20S ECM-30W ECM-20W Abg ⁰ (N): ECM-30S # 15 Image: Comparison of the system of						f_{i} f_{i}				

Table 5 力学特性実験結果の一覧(Test Results of Mechanical Properties)

ECM とNおよびBBに大きな差はない結果となった。

2. 圧縮クリープ試験結果

本報では,載荷時の材齢7日の弾性ひずみに対するクリー プ係数を用い,式(1)により圧縮クリープ試験結果を整理した。

$$\Phi(t, t_7) = \frac{\varepsilon_{cre}(t, t_7)}{\sigma_c(t_7)/E_c(7)} \tag{1}$$

ここに, Φ(t, t7): 材齢 t7 日に載荷された材齢 t 日のクリープ 係数

- Ecre(t, t7): 材齢 t7 日に載荷された材齢 t 日のクリープ ひずみ(u)
- σc(t7): 材齢 t7 日に載荷された載荷応力(N/mm²)
- Ec(7): 材齢7日のコンクリートの静弾性係数(N/mm²)

クリープ係数の経時変化を Fig.9 に, 材齢 140 日時点の N に対するクリープ係数の比を Fig.10 に示す。ECM のクリー プ係数は温度に関わらず, N の約 0.6 倍, BB の約 0.8 倍の 結果となり, N および BB に比べて小さい結果となった。ク リープ係数が小さいことは,収縮時の応力緩和が小さいこと を意味し,収縮拘束応力が増大する要因になると考えられる。

Ⅳ. 拘束ひび割れ実験結果

1. 自由収縮試験結果

自由収縮試験および拘束ひび割れ試験の結果一覧を Table 6 に示す。SO3 量を増加させることで自由ひずみや乾燥収縮 ひずみを大幅に低減できることが 20℃において報告されて いる為⁷⁾,本報では30℃について検討する。

30℃における自由ひずみを Fig.11 に示す。材齢 56 日時点 で, ECM は N および BB と比較して 100 µ 程度小さい結果と なった。これは N および BB の SO3 量が 2%程度であるのに 対し, ECM は 3% であることから, SO3 量の増加によるもの と考えられる。また,養生方法で比較すると,初期水中養生 による収縮低減が顕著であった。

30℃における乾燥収縮ひずみを Fig.12 に示す。乾燥収縮ひ ずみは乾燥開始時の材齢 7 日を基準として求めた。材齢 56 日時点において ECM は 30℃で N および BB の 0.7~0.8 倍と なり、乾燥収縮ひずみにおいても SO3による低減効果が確認 できる結果となった。一方で、養生方法による差はみられず、 初期水中養生の効果は初期の膨張時のみに影響を与える結 果となった。

Table 6 自由収縮試験および拘束ひび割れ試験の結果一覧 Results of Autogenous Shrinkage Test and Restrained Stress Test

(Results of Autogenous Shi inkage Test and Restrained Stress Test)													
記号	環境 温度	乾燥開始時の 自由ひずみ (µ)	 ・開始時の 乾燥開始時の ・由ひずみ 収縮拘束応力 (μ) (N/mm²) 		ひび割れ発生材齢 (日)		ひび割れ時の 収縮拘束応力 (N/mm ²)		ひび割れ時の割裂 引張強度 (N/mm ²)		限界応力 強度比		
N-20S	20°C	-41	0.3 0.3	0.3	39 29	34	2.8 2.3	2.6	3.8 3.8	3.8	0.75 0.61	0.68	
ECM-20S		140	-0.2 -0.4	-0.2	71 70	70	2.1 2.3	2.2	3.0 3.0	3.0	0.69 0.76	0.72	
ECM-20W		94	-0.4 -0.3	-0.3	86 89	88	2.1 2.3	2.2	3.9 3.9	3.9	0.55 0.59	0.57	
N-30S	30°C	-130	0.5	0.5	27 22	25	2.3 2.2	2.2	3.9 3.8	3.8	0.59 0.58	0.58	
BB-30S		-142	0.7 0.7	0.7	17 14	15	1.7 1.5	1.6	3.6 3.6	3.6	0.46	0.43	
ECM-30S		30°C	-111 0.8 0.8	0.8	0.8	29 27	28	1.9 2.0	1.9	3.6 3.6	3.6	0.53 0.55	0.54
ECM-30W		177	-0.3 -0.3 -0.3	-0.3	58 80 89	69	1.9 2.2 2.3	2.1	3.5 3.6 3.9	3.5	0.56 0.58 0.59	0.57	

2. 拘束ひび割れ試験結果

拘束ひび割れ試験体の鉄筋ひずみを用いて,コンクリート の自己収縮および乾燥収縮に伴い試験体断面に生じる収縮 拘束応力を式(2)により求めた。

 $\sigma_{rs}(t) = -\frac{\varepsilon_{s}(t) \times E_{s} \times A_{rs}}{A_{rc}}$ (2) ここに、 $\sigma_{rs}(t)$: 材齢 t 日における収縮拘束応力(N/mm²) $\varepsilon_{s}(t)$: 材齢 t 日における鉄筋のひずみ E_{s} : 鉄筋の弾性係数(N/mm²) A_{rs} : 鉄筋の断面積(mm²)

 $A_{rc}: コンクリートの断面積 (mm²)$

20℃における収縮拘束応力の経時変化を Fig.13 に示す。 20℃においては SO3 量を増加させることでひび割れ発生材 齢が N よりも伸長することが報告されている ⁷。本実験にお いても N は 34 日, ECM-20S は 70 日であり, SO3 量の増加 によりひび割れ発生材齢が伸長したと考えられる。また, ECM-20W は 88 日であり,初期水中養生によりひび割れ発生 材齢が更に伸長する結果となった。

30℃における収縮拘束応力の継時変化を Fig.14 に示す。 高温時において BFS の混合率が大きいほど,ひび割れ発生 材齢が小さくなることが報告されている⁵⁾。本実験において もNは25日,BBは15日となり,SO3量が同じものはBFS の混合によりひび割れ発生材齢が小さくなる傾向がみられ たが, ECM-30S は 28 日であり, SO3 量の増加により N と同 等以上の収縮ひび割れ抵抗性が確認できた。また, ECM-30W は69 日であり,初期水中養生による大幅な伸長を確認した。

環境温度と乾燥開始時の収縮拘束応力の関係を Fig.15 に 示す。なお、凡例の封かんおよび水中は材齢7日以降の養生 方法を示す。封かん養生を行った水準は、乾燥開始時におけ る収縮拘束応力は20℃と比較して30℃が大きく、30℃にお ける ECM(封かん)の収縮拘束応力はNよりも大きい結果と なった。Fig.13およびFig.14にて、材齢7日までの収縮拘束 応力を比較しても、ECM-20Sは収縮拘束応力の増加が緩やか であるのに対し、ECM-30SはBBと同様に収縮拘束応力が急 激に増加しており、これは高温時に自己収縮による拘束応力 が増加していためと考えられる。また、環境温度とひび割れ 発生材齢の関係をFig.16に示す。20℃と比較して30℃は全 水準のひび割れ発生材齢が小さい傾向となり、初期の自己収 縮量が 30℃のひび割れ発生材齢を小さくした一因と考えら れる。

ひび割れ時の収縮拘束応力をひび割れ時の割裂引張強度 で除して算出した限界応力強度比を Fig.17 に示す。一般的な 限界応力強度比は 0.7 程度であるが⁸⁾, BB においては 30℃ でそれよりも小さくなることが報告されている⁹⁾。本実験に おいて ECM(封かん)の限界応力強度比は,20℃では N の約 1.1 倍であったのに対し,30℃では N の約 0.9 倍と僅かに低 下したが,BB と比較すると ECM(封かん)は約1.2 倍となった。

Ⅴ. おわりに

本報では, SO₃ 量を高めた高炉スラグ微粉末を高含有した コンクリートの,環境温度 20℃および 30℃における収縮ひ び割れ抵抗性について検討することを目的に,拘束ひび割れ 試験,自由収縮試験,強度試験およびクリープ試験を実施し た。

実験の結果,ひび割れ発生材齢により収縮ひび割れ抵抗性 を評価したところ,高炉スラグ微粉末を高含有したコンクリ ートは 20℃および 30℃において,普通コンクリートと比較 して高い収縮ひび割れ抵抗性が得られた,また,初期に水中 養生などの湿潤養生を行うことで,ひび割れ抵抗性を改善で きることを確認した。各種材料特性は以下となる。

- (1) 圧縮強度(材齢91日)
 20℃においてNの約0.8倍。30℃においてNの約0.85
 倍, BBの約0.9倍。
- (2) 静弹性係数

N, BB と同程度。

- (3) 割裂引張強度
 - N, BB と同程度。
- (4) クリープ係数 N の約 0.6 倍, BB の約 0.8 倍。
- (5) 乾燥収縮ひずみ(材齢 56 日時点) 30℃において N の約 0.7 倍。
- (6)限界応力強度比
 20℃においてNの約1.1倍,30℃でNの約0.9倍,BB
 の約1.2倍。

参考文献

- "エネルギー消費と CO₂排出を6割以上削減できる ECM セメントを開発", 鹿島建設株式会社 HP, 2014.8.5, https://www.kajima.co.jp/news/press/201408/5c1-j.htm.
- 2) 閑田徹志ほか;高炉セメントB種コンクリートの収縮ひ び割れ抵抗性に及ぼす少量混合成分および初期養生条 件の影響,日本建築学会構造系論文集, Vol.80, No.718, 2015.12, pp.1821-1831.
- 3)日本コンクリート工学会;混和材料から見た収縮ひび割 れ低減と耐久性改善研究委員会,2010.9.
- 4) COMITE EURO-INTERNATIONAL DU BETON ; CEB-FIP Model Code 1990, Thomas Telford, 1991.
- 5)日本建築学会;高炉セメントまたは高炉スラグ微粉末を 用いた鉄筋コンクリート造建築物の設計・施工指針 (案)・同解説, 2017.9.
- 6)日本建築学会;鉄筋コンクリート造建築物の収縮ひび割 れ制御設計・施工指針・同解説,2023.2.
- 7) 辻大二郎ほか; 高炉スラグ微粉末を高含有した結合材を 用いたコンクリートの収縮ひび割れ抵抗性の向上に関 する実験検討, コンクリート工学年次論文集, Vol.38, No.1, 2016, pp.201-206.
- 8)日本建築学会;鉄筋コンクリート構造物の収縮ひび割れ
 -メカニズムと対策技術の現状-,2003.5.
- 9) 百瀬晴基ほか;高炉セメントB種コンクリートの収縮ひ び割れ抵抗性の定量評価に関する研究,日本建築学会構 造系論文集, Vol.79, No.706, 2014.12, pp.1717-1727.

Study on Shrinkage Crack Resistance Mechanism of Concrete with High Blast-Furnace Slag Content

Mayuko Hirata, Haruki Momose, Tetsushi Kanda, Kei-ichi Imamoto¹⁾ and Chizuru Kiyohara¹⁾

Concrete with a high ground granulated blast-furnace slag content is expected to be applied to superstructures of RC buildings because of its significant contribution to reducing environmental impacts through the reduction of carbon dioxide emissions. However, there are some problems when using it in superstructures, such as a decrease in the shrinkage crack resistance at high ambient temperatures. In this paper, to investigate the factors that may reduce the shrinkage crack resistance of this concrete, constrained cracking tests, free shrinkage tests, strength tests, and creep tests were conducted at ambient temperatures of 30°C and 20°C. The results showed that concrete with a high ground granulated blast-furnace slag content exhibited higher resistance to cracking than ordinary concrete, although the crack resistance of this concrete decreased at a high temperature of 30°C. The results also showed that initial underwater curing greatly improves crack resistance.