KAJIMA CORPORATION ENVIRONMENTAL DATA

2021

Environmental Policy

Kajima, as the company "Building for the Next 100 Years," pursues a unique long-term environmental vision, doing its part in the broader social efforts to preserve the environment and ensure economic sustainability.

We work to reduce the environmental impact of our business and take into consideration the entire lifecycle of the structures we construct. We thereby seek to help build societies which use materials responsibly, have a low carbon footprint, and harmonize with nature.

2

As a standard for achieving these goals, Kajima:

- Creates innovative technologies that help safeguard the environment and use resources sustainably;
 - Engages in construction management processes to prevent environmental damage caused by hazardous materials used in construction projects; and
 - Cooperates with the public, including by proactively disclosing information.

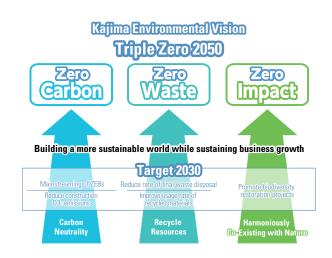
Kajima Environmental Vision

Background of Kajima Environmental Vision

Kajima assess environmental risks and opportunities in the construction business as follows.

Carbon Neutral Society	• High expectation is observed to construction industry like initiatives to zero energy building (ZEB) since it is a high-priority measures from the standpoint that energy efficiency of buildings is in particular cost and reduction effectiveness together with adaptable easily
Recyclin Resource Society	Potential to take advantage of recycled materials (including derived from other industries), therefore, an important role in resource recycling.
Natural Symbios Society	of biodiversity restoration in the urban redevelopment.

• Kajima Environmental Vision: Triple Zero 2050


The Kajima Environmental Vision: Triple Zero 2050 recognizes carbon neutrality, resource recycling and harmoniously co-existing with nature as the key aspects of a sustainable society, and sets Zero Carbon, Zero Waste, and Zero Impact to be the future goals for Kajima to achieve by 2050.

Each of the three Zero goals has been set from two perspectives: risks (reducing the environmental impact of business activities will achieve the Zero goals) and opportunities (the Zero goals will be achieved through business/product proposals made to society and our customers).

Triple Zero 2050 was formulated in May 2013, but to match it to the state of society, it was reviewed once in May 2018 and again in May 2021, each time resulting in the revision of the carbon neutrality goal.

• Target 2030

Target 2030 identifies the core activities for achieving Triple Zero 2050 and sets the 2030 target for the design and construction phases as quantitatively as possible.

Triple Zero 2050 (Formulated in 2013; revised in 2018 and May 2021)

	Social Goals	Triple Zero 2050	Target 2030
	$\begin{array}{l} \textbf{Carbon Neutrality} \\ A \text{ society that balances greenhouse} \\ gas emissions from human activities} \\ with the Earth's capacity for CO_2 \\ absorption \end{array}$	 Zero Carbon Aiming to achieve carbon neutrality for the Kajima Group's greenhouse gas emissions (Scope 1 and 2 emissions) Aiming to reduce Scope 3 emissions by at least 80%, compared to fiscal 2013 	[Group-wide] Reduce Group-wide greenhouse gas emissions (Scope 1 and 2 emissions) per unit of sales to 50% of fiscal 2013 level or lower (equivalent to a 50% reduction of total emissions with fixed construction amount); contribute to the reduction of Scope 3 emissions as well, through joint efforts in the supply chain [Architectural Design] Achieve a ratio of more than 50% ZEB for new buildings
Achieving a More Sustainable World	Recycle Resources A society that pursues zero emissions by employing state-of- the-art infrastructure maintained and operated using sustainable resources	Zero Waste • Aiming to eliminate waste from construction operations by ensuring zero final waste disposal during construction, utilizing sustainable materials, and making buildings last longer	 Completely eliminate final waste disposal from construction operations Achieve a usage rate of recycled materials of at least 60% for principal construction materials* * Principal construction materials (steel, cement, ready-mixed concrete, crushed stone and asphalt)
	Harmoniously Co-Existing with Nature A society that values the continuous benefits of ecosystem services by minimizing the impact of human activities on the environment and living creatures	Zero Impact • Aiming to minimize the overall environmental impact of construction operations by limiting their effect on nature and living creatures while promoting the restoration of biodiversity and new ways to make use of its benefits	 Promote biodiversity restoration projects Build a portfolio of effective projects and make them hubs for biodiversity-related networking Management of hazardous substances: Thoroughly implement preventative measures (especially for soil contamination and asbestos)
	Common Foundation Initiative Areas	 Conduct technology development Actively distribute information in and outsic 	Je the Company

Environmental Targets (FY2018-2020) and FY2020 Actual Figures

		Three-Year (FY2018–2020) Targets	FY2020 Results	
ssions ality)	Construction	 Reduce CO₂ emissions per unit of sales by 8% compared to fiscal 2013 	 Reduced CO₂ emissions per unit of sales by 37.3% compared to fiscal 2013 (22.2% reduction if calculated using the same method as until fiscal 2019) 	
Lower CO2 Emissions (Carbon Neutrality)	Design	 Secure conformance with SEQDC mandatory standards in Building Energy Efficiency Act Become an industry leader in reducing CO₂ emissions 	 Mandatory standards in Building Energy Efficiency Act: Set and managed original issues in line with building use Industry-leading CO₂ emissions targets: Many projects for ZEB, BELS, and other labeling systems. The main building of the Kajima Technical Research Institute received the WELL Health-Safety Rating along with the WELL Platinum Certification. Obtained CASBEE-Smart Wellness Office Certification (S rank) for two high-rise offices, etc. 	
cle irces	Construction	Less than 3% landfill waste including sludge	 2.5% final waste disposal including sludge 	
Recycle Resources	Design	 Implement green procurement 	 Implement green procurement: Average of 5.7 items proposed 	
/ Co- lature		 Implement outstanding biodiversity projects 	 Selected six outstanding biodiversity projects (civil engineering: 1, building construction: 5) 	
Harmoniously Co- Existing with Nature		 Reduce the impact of construction on the natural environment (particularly through management of hazardous materials and polluted water) 	• Hazardous material problems: 1	
ative Areas	Research & Development	 Implement research and technology development that contributes to preservation and sustainable use of the environment Deployment of more than six specific results of basic research and development over three years 	 Environmental contribution technology development projects: 16 (designated environmental topics) Environmental contribution technology project deployment: 7 (deployment of results) 	
Common Foundation Initiative Areas	Engineering	 Respond to changes in social conditions and customer requirements Promote the prevention of environmental accidents involving various chemical substances 	 Confirmed Triple Zero support (7 cases) Confirmed response to chemical substances (3 cases) Project participation: 45 projects 	
	Environment Engineering	 Promote environmental management in concert with Group companies Make technical innovations and create projects based on Triple Zero 	 Steadily promoted renewable energy projects Obtained orders for environmental infrastructure (disposal facilities, water supply) Ongoing demonstration in the Hokkaido hydrogen supply chain 	

Material Flow

Construction Sites

INI	PUT	
Energy		
Electricity	7,272 ×10⁴kWh ✓	
Diesel oil	44,554 kl 🗸	
Kerosene	709 kl	0
Gasoline	914kl 🗸	
Heavy oil	868 kl 🗸	
 Tap water 	87 ×10 ⁴ m ³	
 Main construction materials 	1.95 ×10 ^t	

OUTPU	T
• CO ₂ emissions	15.7 ×10⁴t ✓ ●
 Wastewater 	112 ×10 ⁴ m ³
 Construction surplus soi 	108 ×10⁴m³ ✔
 Hazardous materials collected 	
Materials containing asbestos	14,251 t 🗸
CFCs and halon	3.9 t 🗸
Fluorescent tubes	49.2 t 🗸
 Construction waste 	159.2×10⁴t ✔
 Final disposal volume 	4.0 ×10⁴t √

Changes in CO ₂ em attributable to con	
Total emissions	15.7×10 ⁴ t-CO ₂
Basic unit	13.8 t-CO ₂ /10 ² million
Reduction rate (compared with FY2013)	37.3%* 🗸

 * 22.2% reduction if calculated using the same method as until FY2019

Volume of construction waste							
and final disposal volume							
Volume	159.2 ×10 ⁴ t	\checkmark					
Volume (excluding sludge)	102.1 ×10 ⁴ t	<					
Final disposal volume	4.0 ×10⁴t	\checkmark					
Final disposal volume (excluding sludge)	3.3 ×10 ⁴ t	<					
Final disposal rate	2.5%	\checkmark					
Final disposal rate (excluding sludge)	3.2%	<					

Office

INPUT			OUTP	UT
 Energy 				
Electricity	2,627 ×10 ⁴ kWh		CO_2 emissions	1.3 ×10 ⁴ t
Diesel oil	8 kl 🗸			
Kerosene	10kl 🗸	0	Wastewater	
Heavy oil	7 kl 🔽		Wastewater	15×104m3
Gas	16.9 ×10 ⁴ m ³			
Heating, Steam, Cooling	14,782 GJ 🗸		Volume of waste	1,670 t 🗹
 Tap water 	15 ×10 ⁴ m ³			

Scope: Kajima Corporation only

Construction sites: all domestic and overseas sites (excluding domestic affiliate companies and overseas subsidiaries)

·Offices: offices of Kajima corporation and overseas offices (excluding domestic affiliate companies and overseas subsidiaries)

Regarding third party verification

•Environmental performance data for FY2020, including greenhouse gas emissions (Scope 1, 2, 3), energy use, tap water use, hazardous materials, and waste emissions were verified by Japan Quality Assurance Organization (JQA). Items indicated with very verified by the third party. (Verification document attached to the end page)

Zero Carbon

CO ₂ emissions from construction sites (FV)							
		2013 (base year)	2018	2019	2020		
Emissions	×10 ⁴ t-C0 ₂	22.8	25.1	22.7	15.7 🗸		
Basic unit	t-CO ₂ /10 ² million ¥	22.0	20.0	17.6	13.8 🗸		
Reduction rate	%	—	9.0	20.0	37.3* 🗸		

* The emissions calculation method was changed in FY2020 from making estimates based on sample data to obtaining the actual data from all construction sites. If calculated using the FY2019 method, emissions, the basic unit and the reduction rate would be 19.5×10^4 t- CO_2 , 17.1 t- $CO_2/10^2$ million yen, and 22.2%, respectively.

Scope type CO₂ emissions (construction sites and offices)

		2016	2017	2018	2019	2020
Scope-1	×104t-CO2	18.5	19.0	20.5	17.0	12.4 🗸
Scope-2	×104t-CO2	8.8	9.8	6.0	7.0	4.7 🗸

Energy Consumption

(F)						
		2016	2017	2018	2019	2020
Total amount of energy consumption*	×10 ⁴ kWh	120.1	113.6	115.4	109.1	77.9 🗸
Fossil fuels consumption	×10 ⁴ kWh	74	75.9	81.8	68.0	49.9 🗸
Construction sites	×10 ⁴ kWh	73.7	75.6	81.6	67.8	49.7 🗸
Offices	×10 ⁴ kWh	0.3	0.3	0.2	0.2	0.2 🗸
Purchased electricity	×10 ⁴ kWh	16.4	13.5	11.9	14.6	9.9 🗸
Construction sites	×10 ⁴ kWh	13.8	10.8	9.4	12.1	7.2 🗸
Offices	×10 ⁴ kWh	2.6	2.7	2.5	2.5	2.6 🗸
Steam/Heating/Cooling consumption (only office)	×10 ⁴ kWh	0.7	0.6	0.6	0.6	0.6 🗸

* The total amount of energy consumption is different from the simple total value of each energy consumption, since it sums up the value obtained by converting the purchased electric energy into the primary energy.

Scope3 (indirect emissions excluding Scope-1,2) (F)							
		2018	2019	2020			
Scope-3	×104t-CO2	235.1	413.1	230.1 🗸			
Category1*1 (purchased goods and services)	×104t-CO2	117.9	126.1	127.2 🗸			
Category11*2 (use of sold products)	×10 ⁴ t-CO ₂	103.6	257.9	79.1 🗸			

*1: The procured amount of crusher-run stone, asphalt, cement, and ready mixed concrete, which are the core materials in the construction industry, are subjected for accounting.

*2: The amount of CO₂ emissions of the buildings from the use stage to the end of lifetime (are set for 30 years) includes in the accounting in the year in which the building was designed and built.

Contribution amount of indirect CO ₂ emissions reduction (FY)									
		2016	2017	2018	2019	2020			
Contribution amount of CO ₂ emissions reduction attributable to green procurement (blast furnace cement/concrete)	×104t-CO2	10.4	10.0	9.4	9.3	8.8			
Contribution amount of CO ₂ emis- sions reduction attributable to energy-saving design of buildings	×10 ⁴ t-CO ₂	129.3	39.0	31.3	48.8	31.7			
Total	×10 ⁴ t-CO ₂	139.7	49.0	40.7	58.1	40.5			

* From FY2017, the CO₂ emission amount is calculated by multiplying annual contribution of CO₂ reduction attributable to energy-saving design of buildings, which are designed internally and completed in the FY, by the life-cycle of buildings (30years).

Scope type CO ₂ emissions (principal affiliates in Japan)								
		2018	2019	2020				
Scope-1	×104t-CO2	5.6	5.1	4.6				
Scope-2	×104t-CO2	1.9	1.7	1.6				

* The amount of CO₂ emissions of 14 principal construction and environment affiliates exclude real estate development.

Sales of these 14 companies account for at least 70% of sales by subsidiaries and affiliates in Japan.

Zero Waste

Overseas construction sites are excluded from the calculation because standards and treatment methods for waste are greatly different from country to country.

Volume of construction wa	Volume of construction waste and final disposal volume									
		2016	2017	2018	2019	2020				
Volume	×10 ⁴ t	230	198.8	199.4	145.5	159.2 🗸				
Volume (excluding sludge)	×10 ⁴ t	123.6	123.4	130.2	88.4	102.1 🗸				
Final disposal Volume	×10 ⁴ t	13.2	4.8	8.5	5.7*	4.0 🗸				
Final disposal Volume (excluding sludge)	×10 ⁴ t	3.3	2.6	5.8	2.9	3.3 🗸				
Final disposal rate	%	5.8	2.4	4.3	3.9	2.5 🗸				
Final disposal rate (excluding sludge)	%	2.7	2.1	4.5	3.3	3.2 🗸				

*Total waste disposal volume: total volume from construction sites (the table above) and offices (the table: volume of offices waste) is 41,289t

Waste treatment by category

Was	Waste treatment by category (FY)										
Co	nstruction was	te	Co	oncrete remnan	its	Aspha	It Concrete rem	nants		Wood scrap	
			2018	2019	2020	2018	2019	2020	2018	2019	2020
tegory	Recycled volume	t	797,971	559,495	541,836 🗸	139,679	117,001	108,294 🗸	42,700	25,178	43,887 🗸
Processing Category	Reduction volume	t	28	49	93 🗸	26	35	13 🗸	673	412	401 🗹
Proce	Final disposal volume	t	1,994	1,069	1,075 🗸	439	9	168 🗸	421	506	249 🗹
	Total volume	t	799,992	560,612	543,004 🔽	140,144	117,044	108,476 🗸	43,794	26,096	44,537 🗸
Co	nstruction was	te	Co	nstruction slud	ge		Mixed waste				
			2018	2019	2020	2018	2019	2020			
tegory	Recycled volume	t	601,964	435,015	496,016 🗹	35,982	25,374	20,914 🗸			
Processing Category	Reduction volume	t	62,959	50,535	46,915 🗸	2,177	2,716	1,986 🗸			
Proces	Final disposal volume	t	26,601	27,127	6,708 🗸	13,415	9,372	11,397 🗸			
	Total volume	t	691,524	512,676	549,638 🗸	51,574	37,462	34,297 🗸			

Red	cycle rate by	wa	ste category								(FY)
C	onstruction was		Co	oncrete remnar	its	Aspha	It Concrete ren	nants		Wood scrap	
			2018	2019	2020	2018	2019	2020	2018	2019	2020
egory	Recycled rate	%	99.7	99.8	99.8 🗸	99.7	99.8	99.8 🗸	97.5	94.1	98.5 🗸
ing Cat	Reduction rate	%	0.0	0.0	0.0 🗸	0.0	0.0	0.0 🗸	1.5	4.0	0.9 🗸
Processing Category	Final disposal rate	%	0.2	0.2	0.2 🗸	0.3	0.0	0.2 🗸	1.0	1.9	0.6 🗸
	Total	%	100	100	100 🗸	100	100	100 🔽	100	100	100 🗸
C	onstruction was		Co	onstruction slud	ge		Mixed waste				
			2018	2019	2020	2018	2019	2020			
tegory	Recycled rate	%	87.0	86.2	90.4 🗸	69.8	67.7	61.0 🗸			
Processing Category	Reduction rate	%	9.1	9.0	8.5 🗸	4.2	7.2	5.8 🗸			
Proces	Final disposal rate	%	3.8	4.7	1.2 🗸	26.0	25.0	33.2 🗸			
	Total	%	100	100	100 🗸	100	100	100 🗸			

Zero Waste

Emissions by waste category (FY2020)								
Construction waste	Volume (t)	Percentage of waste volume						
Concrete remnants	543,003 🗸	34% 🗸						
Asphalt Concrete remnants	108,476 🗹	7% 🗸						
Wood scrap	44,537 🗹	3% 🗸						
Construction sludge	571,195 🔽	36% 🗸						
Mixed waste	34,297 🗸	2% 🗸						
Others	290,377 🗸	18% 🗸						
Total volume	1,591,885 🗸	100% 🗹						

Volume of offices waste (FY)									
		2016	2017	2018	2019	2020			
Offices	t	1,414.8	1,942.4	2,036.4	2,096.5	1,670.0 🗸			

Amount of tap water consumption								
		2016	2017	2018	2019	2020		
Construction sites	×104m3	159.7	86.5	71.3	60.9	87 🗸		
Offices	×104m3	12.7	14.8	15.6	15.0	15 🗸		
Total	×104m3	172.4	101.3	86.9	75.9	102 🗸		

Amount of wastewater discharge (FY)						
			2020			
Construction sites	×104m3		112 🗸			
Offices	×104m3		15 🗸			
Total	×104m3		127 🗸			

Usage rate of recy	cled materials				(FY)
	Material		2018	2019	2020
	Total usage	t	1,460,063	1,558,339	1,569,311 🗌
Cement	Recycled material usage	t	368,654	365,654	344,785
	Usage rate of recycled materials	%	25	23	22 🗌
	Total usage	t	674,733	691,046	361,439
Aggregate	Recycled material usage	t	445,273	441,925	117,452
	Usage rate of recycled materials	%	66	64	32 🗌
	Total usage	t	53,947	26,378	20,039
Asphalt	Recycled material usage	t	44,656	25,036	19,664
	Usage rate of recycled materials	%	83	95	98 🗌
	Total usage	t	2,188,743	2,275,763	1,950,789 🗌
Total	Recycled material usage	t	858,583	832,615	481,901 🗌
	Usage rate of recycled materials	%	39	37	25 🗌

Zero Impact

Recover amount of CFC	Cs & hal	ons				
		2016	2017	2018	2019	2020
Recover amount	t	0.1	5.3	1.5	0.2	3.9 🗸
Recover amount of use	ed flores	cent lamp				
		2016	2017	2018	2019	2020
Recover amount	t	34.9	42.2	77.9	43.3	49.2 🗸
			42.2	77.9	43.3	49.2 🗸
Recover amount Disposal volume of PCI			2017	2018	2019	49.2 ⊻ 2020

			2020
Number of items	t	CFCs/ halon, fluorescent lamps (mercury), asbestos and other hazardous materials	104,127 🗸

Recover amount of materials containing asbestos (FY)						
		2016	2017	2018	2019	2020
Recover amount	t	13,250.5	17,490.1	56,926	6,197	14,251 🗸

Number of soil contamination	n surveys				(FY)
	2016	2017	2018	2019	2020
Number of surveys as a designated institution	17	17	14	9	9 🗌
Number of law investigation included in above number	5	5	7	4	4 🗌

Air pollutant emis	ssions					(FY)
		2016	2017	2018	2019	2020
NOX	t	1,220	1,250	1,346	1,120	821 🗸
SOX	t	180	185	200	167	122 🗸

2020 Environmental accounting report

1. Overview

Kajima has shifted to the segment accounting, which was limited to the construction waste the subject of environmental accounting in the FY 2010.

- Construction waste is managed by manifest system, together with high accuracy of numerical value (product category of emissions and disposal amount).
- Construction waste revealed to be the largest cost factor, which accounts for half of the total environmental cost based on the survey results of environmental accounting.
- Waste disposal is evaluated from both aspects of cost and environmental impact, and use it as an incentive for zero emissions.

2. Result on major construction waste					
Construction waste	Volume of waste (127.3×10⁴t)	Processing cost (134×10 ² million ¥)	CO₂ emissions (0.8×10⁴t)		
Construction sludge	548,477t	7,350 x million ¥	2,977t		
Concrete remnants	542,158t	2,023 x million ¥	2,712t		
Asphalt concrete remnants	108,334t	434 x million ¥	597t		
Mixed waste (organic)	26,925t	1,116 x million ¥	1,055t		
Mixed waste (inorganic)	2,908t	96 x million ¥	242t		
Wood scrap	44,505t	2,386 x million ¥	607t		
Total	1,273,307t	13,405 x million ¥	8,190t		
reference: All construction waste	1,591,885t	-	9,043t		
Percentages of major wastes	80%		91%		

Characteristics of the construction industry include the following.

- Wood scrap & mixed waste have large impact on treatment costs compared to emissions.
- Concrete remnants & asphalt concrete remnants are easily recycled, and, the impact on CO₂ emissions and the cost are small compared to the emissions.

3. Evaluation

- CO₂ emission of 0.8x10⁴t caused by waste disposal in general is equivalent to over 5% of 15.7x10⁴ tons, the CO₂ emissions from the construction work. (FY2019: 4%)
- Waste disposal cost accounts for 1.1% of value of construction work. (FY2019: 1.2%)

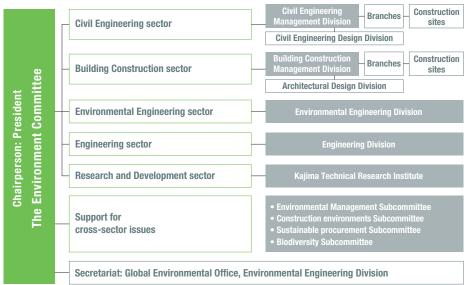
4. R&D investment on addressing environmental issues

• R&D investment for addressing environmental issues in fiscal 2020 amounted to 8,100 million yen.

Calculation method

[Quantity]

• All quantity data of waste manifests are aggregated at Kajima's environmental information system.


[Cost]

• The processing unit price of each project was aggregated and set the average unit cost for each branch by-item.

[CO₂ emission]

- In the Kanto area, waste disposal sites are selected for each item, then CO₂ emissions per treatment volume are calculated based on processing costs, energy consumption, maintenance / expendable items and facility construction costs.
- As for managed waste disposal sites, CO2 emissions are estimated based on the existing survey literatures.
- The boundary is set to intermediary processing facilities and disposal sites which are first delivered from construction sites. Subsequent facilities are excluded.
- Project sites outside of Japan are excluded since applicable standards and treatment methods of construction waste vary widely from country to country.

Environmental Management System

Kajima operates environmental management systems (EMS) that are compliant with ISO 14001. The Environment Committee is headed by the President and implements initiatives in each of five sectors: civil engineering, building construction, environmental engineering, engineering, and research and development.

Four subcommittees address environmental management, construction environments, sustainable procurement, and biodiversity as cross-sector issues.

Environmental initiatives for domestic Group companies are primarily focused on construction-related companies, due to their high environmental impact.

Environmental Management System Certification

Independent Verification Report

No.1811004234

Independent Verification Report

To: Kajima Corporation 1. Objective and Scope

I. Objective and Scope Japan Quality Assumace Organization (hereafter "JQA") was engaged by Kajima Corporation (hereafter "the Company") to provide an independent variation on "Kajima Corporation - Calculation Results for FY2020* environmental performance data, revised July 7, 2021" (hereafter "the Report). The content of our varification was to express our conclusion, based on our varification procedures, on whether the statement of information regulting provolvess gas (hereafter "Calffor) emvision; requiry use (incl. data converted into energy equivalents) (hereafter "energy use"); clean water use, waterwater discharge, waste emissions; emissions; transfer and disposal moment of the 18 hazardous substrates: associated with convention work (hereafter "hazardous substrates emissions"; and NOx and SOx emissions in the Report was correctly measured and calculated, in accordance with the "Kajima Corporation - Calculation rule for environmental performance data. Ukly 2021" (hereafter "he Rule"). The purpose of the verification is to evaluate the Report objectively and to enhance the crobibility of the Report.

2. Procedures Performed JOA conducted verification in accordance with "ISO 14064-3" for GHG emissions for Scope 1, 2 and 3 and energy use, and with "ISAE3000" for clean water use, wastewater discharge, waste emission, huzardoos substances emissions; and NOx and SOx emissions; respectively. The scope of this verification assignment covers Scope 1, 2 and 3 (15 categories) as GHG emissions; energy use; clean water use, wastewater discharge; waste emission; huzardoos substances emission; and NOx and SOx emissions; was conducted to a limited level of assumace and quantitative materiality was set at 5 protent each of the total emissions and total amount of energy use, clean water use an wastewater discharge in the Reyort. The comparisotical boardness of this verification covers domsitic construction sites and civil engineering sites, overseas civil engineering sites, 71 domestic offices and 6 overseas offices of the Company. One verification encodences include.¹ Our verification procedures included

- Verifying to choose included:
 Verifying to choose the Rule and conduct verification. Verifying to choose monitoring and calculation system, calculation neuraric, and cross-check activity data against evidence
 Cross-chocking activity amount data of 3 offices on the basis of sampling, to evaluate accuracy of calculated results for GHG emissions (Score) and 32, neurophic spectra on the state of the same and bundratics, calculation scenario and allocation method for CO2 emissions (Score).
 On-this assessment to chock the report score and bundratics, calculation scenario and allocation method for CO2 emissions (Score).
 Controls are scenario and allocation subtraces emissions; NOx and SOx emission; calculation system and its controls for overall

3. Conch sion

3. Continuous Based on the procedures described above, nothing has come to our attention that caused us to believe that the statement of the information regarding the Company's FV2000 GHG emissions (Scope 1, 2 and 3); emergy use, clean water use; watewater discharge; water emission; hazardous and stratescere emission; and NOA and SOS emissions in the Deport in om muterially covered, or has not been prepared in accordance with the Rule.

"Please refer to the next page.

JQA

No.1811004234

Table: Environmental data reported by Kajima Corporation for the FY2020

GHG emissions(t-CO2)	
Scope1	123,759
Scope2	46,568
Scope3	2,300,701
Water consumption(m3)	1,020,240
Wastewater discharge(m3)	1,272,759
Waste emissions(t)	41,289
Hazardous substances emissions(t)	104,127
NOx emissions(t)	821
SOn amiggiong(t)	122

4. Consideration

4. Consideration The Company was reponsible for preparing the Report, and JQA's responsibility was to conduct verification of GHG emissions (Scope 1, 2 and 3); energy use; clean water use; wastewater discharge; waste emissions, hazardous substances associated with construction work; and NOx and SOx emissions in the Report only. There is no conflict of interest between the Company and JQA.

Sinds Sumio Asada, Board Director For and on behalf of Japan Quality Assurance Organization 1-25, Kandasadacho, Chiyoda-ku, Tokyo, Japan July 26, 2021

2/2