
 Prediction of Structure-Borne Sound in Buildings  
Using the Substructure Synthesis Method 

  

Kenichi Takebayashi， Aya Tanaka and  Kei Andow1) 

 

 

 

 

 

 

ABSTRACT 
 

Accurate predictions of structure-borne sound in buildings using numerical simulation method, such as 
the finite element method, require detailed modeling, which consumes large amounts of memory and 
computation time. The substructure synthesis method has been progressively developed since 1970 to 
obtain dynamic characteristics of large-scale structures, such as machines and vehicles. This method 
determines the dynamic characteristics of a structure by synthesizing the vibration modes in each 
substructure, which can be computed independently. However, it is time consuming when applied to 
analyze a building due to the computational load. This study presents two approaches to reduce the 
computation time of the substructure synthesis method. The first approach is to reuse the calculation results. 
In buildings, once a wall, column, or beam has been analyzed, the results can be applied to the other walls, 
columns, and beams having the same material and shape. The second approach is to multiplex the algorithm. 
A group of substructures are analyzed and synthesized into a new substructure. This procedure is repeated 
until the substructures become the entire structure. In this study, these two approaches are applied to 
analyze a frame structure and are shown to be effective in reducing the computation time without 
decreasing the calculation accuracy. 
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I．Introduction 

Prediction of structure-borne sound using the finite 
element method (FEM) with detailed modeling, consumes 
large amount of memory and computation time. Although 
the supercomputers have become more advanced and 
enable large-scale problem solving, operating them is still 
extremely expensive. Furthermore, design changes are 
made frequently in design phase, so it is not practical to use 
supercomputers. Thus, energy-based simulations, such as 
the statistical energy analysis (SEA), are used1). These 
simulations expect lower computational costs than the FEM. 
But in a low-frequency range, accurate prediction is 

difficult because of the low modal density. The substructure 
synthesis method has been progressively developed since 
1970 to obtain dynamic characteristics of large-scale 
structures, such as machines and vehicles2). This method 
can independently analyze substructures and can synthesize 
them to obtain the dynamic characteristics of the entire 
structure. Therefore, this method can analyze if the target 
structure is too large to analyze at once. However, 
computation time and storage/memory needed to store 
computed results for each substructure would also increase 
along with the increasing of the number of substructures. 

In this study, we investigated the efficiency of the 
substructure synthesis method in terms of the 
computational cost, with a focus on computation time. To 
this end, two bottlenecks of the algorithm are presented. 
Then, two approaches for reducing computation time are 
investigated. The first approach is to reuse the calculation 
results and the other is to multiplex the algorithm. 
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II．Substructure Synthesis Method 
1. Modal Analysis and Eigenvalue Problem 
Substructure synthesis method is based on the modal 

analysis theory. Modal analysis is used to obtain the 
dynamic characteristics of a structure/space using a 
superposition of eigenmodes with initial condition 
described in Eq. (1).  
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where, xq is the dynamic characteristics at the receiver 
point q, ω is an angular frequency, Ωm is the mth order 
eigenvalue, ϕmq and ϕmp are the mth eigenmode at the 
receiver point q and the driving point p, fp is the driving 
force at the point p. Modal analysis can immediately 
calculate the dynamic characteristics at an another point if 
the eingenmodes have already been computed. Compared 
with the approach of solving system equation at each 
frequency, the approach mentioned above has a much 
shorter computation time. 

Eigenmodes and eigenvalues are obtained by solving 
the generalized eigenvalue problem (K-ω2M){x} = {0}. K 
and M are the stiffness and mass matrix computed by the 
FEM, respectively. This eigenvalue problem can be solved 
in various ways, such as the subspace3) or Lanczos4) 
(Arnoldi5)) method or substructure synthesis method. In 
particular, the substructure synthesis method can obtain the 
eigenmodes of the entire structure/space by synthesizing 
the eigenmodes of each substructure, which are computed 
independently. Therefore, this method is applicable when a 
target structure/space is too large to solve the eigenvalue 
problem at once. 

2. Algorithm of the Substructure Synthesis Method 
In this study, component mode synthesis6) (CMS), one 

of the substructure synthesis algorithms is used. The CMS 
algorithm is described below. A structure divided into two 
substructures is shown in Fig.1. Nodes of each substructure 

are classified into two areas: internal and coupling area. 
The internal area does not have the common nodes to the 
other substructure. Conversely, the coupling area comprises 
only common nodes. The K matrix of each substructure is 
represented in equation (2) and (3), where a and c represent 
the internal areas of each substructure, b represents the 
coupling area of both substructures. 
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The generalized eigenvalue problems on each internal 
area (shown in Eq. (4) and (5)) are solved using the 
Lanczos method. As a result, eigenmode matrices ϕa and ϕc 
and eigenvalues λa and λc are obtained. Eigenmode matrices 
ϕa and ϕc comprise 1st to Mth eigenvectors in ascending 
order. Generally, the order M is set much smaller than the 
degree of freedom of the internal area.    
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Each internal area are degenerated into coupling area 

using the Guyan reduction7).  
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where )1(

bbK and )2(
bbK are the degenerated matrices and 

Tab and Tcb are the transformation matrices computed using 
Eqs. (8) and (9) respectively.  
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The degenerated matrix for the coupling area is 

assembled and analyzed to obtain eigenmodes matrix ϕb 
and eigenvalue λb.  
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Fig.1 Schematic of the Two Substructures. Each 
Substructure Comprises Internal (red) and Coupling 

Area (blue) 
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The equation of motion for all the areas in physical 
coordinate system is transformed into the modal coordinate 
system by the transforming matrix Tall. The degree of 
freedom of Eq. (11) is Mall=Mb+Ma+Mc, where Mb, Ma and 
Mc are the highest order of coupling area b, internal area a 
and c, respectively. Mall is much smaller than the degree of 
freedom of the equation of motion in physical coordinate 
system. Solving Eq. (11) provides the eigenmodes matrix ξ 
in modal coordinate system and eigenvalue λall. Equation 11 
is given as follows: 
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where Tall , Kall and Mall can be written as  
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Finally, eigenmodes of entire structure ϕall on physical 

coordinate are obtained by re-transforming (Eq. 15). 
  

 allall T  (15)

 
3. Application of the Substructure Synthesis Method 

to a Frame Structure 
The substructure synthesis method described above was 

implemented to obtain dynamic characteristics of the frame 
structure shown in Fig. 2. This frame structure was a 1/20 - 
scaled model of a ten-story building and comprised PVC 
beams and columns with 3 cm x 3 cm cross section. The 
height of the frame structure was 1.5 m and its width was 
0.33 m. The material properties of the frame structure are 
shown in Table 1. The bottom of the columns was fixed. 
First, the analytical model with a finite element (FE) mesh 
is created. The frame structure was discretized by 5 mm, 8 - 
node rectangular elements. The number of nodes was 
162,876 (488,626 dofs). Moreover, 500 eigenmodes were 
obtained using the Lanczos and substructure synthesis 

 
Fig.2 A 1/20-Scale 10-Story Frame Structure 

Model Divided into 40 Substructures. Each 
Substructure is Indicated with a Different Color 

Fig.3 Measured and Calculated Accelerances at the 
Top of the Column 

Table 1 Material properties of PVC 
 

Young’s 
modules ,GPa

Poisson’s 
ratio 

Density, 
kg/m3 

Modal 
damping

2.843 0.25 1385 0.02 
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methods. In case of the substructure synthesis method, the 
FE model was divided into 40 substructures and was 
synthesized according to the calculation procedure 
expressed above. All computations (the Lanczos and the 
substructure synthesis methods) were performed in parallel 
using a personal computer with eight physical cores (CPU: 
Intel Xeon E5-2630 v3 2.4 GHz, OS: Windows 7 64bit, 
RAM: 32 GB).  

Fig. 3 shows the measured and calculated results of the 
transfer function (driving-point accelerance, 
lateral-direction excitation) at the top of the column. All the 
results agree well with the measured values. The 
discrepancy above 400 Hz was attributed to modal damping. 
In this case, modal damping was assigned a constant value 
(0.02), but modal damping in the high frequency region 
could be higher than 0.02. This value will be estimated 
accurately in future work.  

Fig. 4 shows the computation time for the frame 
structure. The Lanczos method took 1640 s, whereas, the 
substructure synthesis method took 434 s, achieving a 73 % 
reduction in computation time. 

5. Bottlenecs in the calculation
Fig. 5 shows the breakdown of the computation time for

the frame structure model using the substructure synthesis 
method.  

As observed, the CMS algorithm has two bottlenecks. 
The first bottleneck is computation of the 

transformation matrix in Eqs. (8) and (9). These equations 
include inverse matrix Kaa-1 and Kcc-1 which require 
lower-upper (LU) or Cholesky factorizations. These 
equations also consume large amounts of memory, because 
the inverse matrices lose their sparsity pattern and become 
full matrices.  

The second bottleneck is to solve the eigenvalue 
problem for coupling area given in Eq. (10). Increasing the 

number of substructures in the target model will also 
increase the number of coupling area and, consequently, the 
computation time. 

III．Reuse and Multiplexing 
We applied two approaches to reduce the computation 

time at the bottlenecks: reusing of the calculation results and 
multiplexing the algorithm. 

1. Reusing
In a building, many structural elements, such as beams,

columns and walls, have the same material composition and 
size. Reusing the calculation results may prove to be an 
efficient way to reduce the computation time and 
consumption of large amounts of memory, especially for 
buildings, because, once a wall, column, or beam has been 
analyzed, the result can be applied to the other walls, 
columns, and beams. 

In this study, using a reuse procedure, we attempted to 
reduce computation time and memory consumption for 
solving frame structure model described above. Only two 
substructures, a bottom and a top substructure with 
different boundary conditions, were analyzed, and the 
calculation results (the eingenmode matrix of internal area, 
transformation matrix, and degenerated matrix) were stored. 
Fig. 6 shows the substructures to be analyzed. In order to 
apply the calculation results to other substructures, the 
computed results must be rotated and permuted for 
attaining the same nodal order between the original and the 
copied substructures. Although, these procedures require 
additional computation, the computation time for rotation 
and permutation is much shorter than the time consumed at 
the first bottleneck without reuse procedure. With regard to 
memory consumption, reuse procedure requires to store 
matrices of original substructures shown in Fig. 6. It is only 
1/20 use of memory compared to without reuse procedure.  

Fig.5 Breakdown of the Computation Time for a 
Frame Structure Model Using the Substructure 

Synthesis Method 

0
200
400
600
800

1000
1200
1400
1600
1800

Lanczos Substructure synthesis
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Fig. 7 shows the 1st to 30th order eigenfrequencies 
computed with/without the reuse procedure. These values 
are in good agreement regardless of whether the reuse 
procedure is employed. Table 2 shows the computation time 
with/without the reuse procedure. As observed, the 
computation time with the reuse procedure is 
approximately 40 % shorter than that without the reuse 
procedure.  

2. Multiplexing
The second bottleneck is to solve eigenvalue problem on

the coupling area. We attempted to multiplex the algorithm 
in order to reduce the number of nodes in coupling area.  

To this end, a two-stage algorithm was adopted. A small 
group of substructures was analyzed and synthesized into a 
new substructure. Then this new substructure was 
synthesized again with the other synthesized substructures 
(Fig. 8). In case of the frame structure, 40 substructures 
were classified into eight groups; each group had four to six 
substructures. The number of coupling area was 76, and 
each coupling area had 49 nodes. The total number of 
nodes in the coupling area was 3,724. Using the two-stage 
algorithm, the number of nodes in the coupling area was 
reduced to 196-294 in the first stage in each small group, 
and to 1,470 in the second stage.  

The computation time for the eigenvalue analysis of the 
coupling area is 3 s in the first stage and 48 s in the second 
stage; without multiplexing, the computation time was 132 
s. Although the multiplex approach reduced the
computation time, this reduction was only 34 s (434-400 s.)
because the multiplex algorithm requires another
computations (updating the transformation matrix, solving
the eigenvalue problem in the modal coordinate system,
and re-transforming the eigenmodes from the modal
coordinate system to the physical coordinate system).

3. Combination of the Reuse and Multiplex Strategies
When using both the reuse and multiplex strategies, the

computation time is 217 s. Thus, the computation time 
when both strategies are used is half of that when CMS 
without reuse or multiplexing is used, and 1/8 of that when 
the Lanczos method is used. 

Fig.6 Substructures to be Analyzed. Bottom and 
Top Substructures Have Different Boundary 

Condition; Internal Area (gray line), Coupling Area 
(red line) 
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Table 2   Computation Time Using Different 
Simulation Strategies 

Lanczos 
CMS with 

- multiplex reuse multiplex, 
reuse 

1640 s 434 s 400 s 251 s 217 s 

IV．Conclusions 
In this study, the substructure synthesis method was used 

to obtain dynamic characteristics of the frame structure 
model. This approach effectively reduced the computation 
time compared with the Lanczos method. However, two 
bottlenecks were identified in the substructure synthesis 
algorithm: computing the transformation matrix and 
conducting the eigenvalue analysis for the coupling area. 
To eliminate these bottlenecks, we employed two strategies. 
The first strategy was the reuse of the computation results. 
Specifically, the calculation results obtained for one 
substructure were applied to other substructures with the 
same shapes, properties and boundary conditions via matrix 
rotation and permutation. This procedure reduced the 
computation time and memory consumption. The second 
strategy was to multiplex the algorithm using the two-stage 
algorithm. Although, the computation time for the 
eigenvalue analysis of the coupling area was much shorter 
than that without multiplexing, the reduction in overall 

computation time was rather small because of the need for 
additional calculations. The combination of reuse and 
multiplexing was very effective in reducing the 
computation time. 
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