建築分野の地震対策技術

Earthquake-resistant Technologies for Building Structures

高	橋	元	美	澤	本	佳	和	宮	田		章
日	向	大	樹	丹	·羽	直	幹	高	尚	栄	治

I. はじめに

極稀に起こる最大級の地震に対して人命を保護することを最低限 の目標の一つとする建物設計理念は、地震国日本において古くから 変わるものではないが、建物を持続可能な社会インフラとするため には、耐震安全性の向上はもとより、地震後の継続使用性や補修性、 地震時の居住性(安心感)の向上も必要である。

耐震安全性の確保を目指して,建物を構成する構造部材の変形性 能向上技術や地震入力の低減,揺れの抑制に効果的な免震・制震技 術¹⁾が進化を続けている。構造部材の変形性能の向上は,地震後の 継続使用性や補修性を高める効果があり,免震・制震技術は建物の 損傷低減のみならず地震時の居住性を高める効果がある。

これらの技術の例として、ここでは、実用段階技術として、CFT 柱・梁端拡幅鉄骨梁接合部の性能向上技術²⁾と鉄筋コンクリート (RC)造建物のヒンジリロケーション架構³⁾、検討段階技術として 極低摩擦すべり支承を用いた高性能免震⁴⁾とウォータージェット を用いた杭頭目視調査技術⁵⁾について述べる。

Ⅱ. CFT 柱·梁端拡幅鉄骨梁接合部の性能向上技術

長周期・長時間地震下の鉄骨高層建物において,部材・接合部が 多数回繰り返し荷重を受けた場合の挙動や梁端接合部の繰り返し性 能に関して,様々な検討⁶⁾が行われている。ここでは,梁端拡幅鉄 骨梁の多数回繰り返し性能を向上させる目的で,水平ハンチ開始点 に大きな円弧(R)を設け,柱をCFTとした部分架構の多数回繰り返 し実験を実施して,構造性能の確認を行った。

試験体は,梁断面が BH-600×225×12×19 (SN490B) で,柱断面 が□-450×450×16 (SN490B) からなるト字形部分架構 (3/4 縮尺) である。また,柱は Fc60 のコンクリートを充填した CFT 柱であり, 径厚比 (D/t) が 28 である。試験体形状を Fig.1 に,接合部詳細を Fig.2 に示す。梁端拡幅形状は、ハンチ開始点での応力集中を防ぐ ことを目的として、ハンチ部と梁フランジを R150 で一体成型 (一体 型)しており、R は Fig.2 の直線 A (ウェブの曲げモーメント負担を 考慮した必要フランジ幅とハンチ開始点を結ぶ直線) に接するよう に設けている。また、スカラップは JASS6 改良型 (27R+8R) とした。 梁ウェブは高力ボルト摩擦接合とし、ハンチ開始点が全塑性荷重と なった時のせん断力に対して滑らない設計とした。試験体は柱上下 をピン・ローラー支持し、梁中央部および先端部の面外変形を拘束 した状態で、梁先端に接続したジャッキにより加力した。加力パタ ーンは正負交番漸増での繰り返しとし、梁の塑性率μを基準として 設定した。

実験結果をFig.3に示す。 $\mu = \pm 6.0 \text{ } 01$ 回目の加力でフランジに 局部座屈が発生し、その後、局部座屈が進展することにより荷重が 低下し、 $\mu = +8.0 \text{ } 02$ 回目の加力で実験を終了した。累積塑性変形 倍率 η は67 であり、十分な変形性能を有していることを確認した。 本工法は鉄骨造建物の耐震安全性向上に寄与するものである。

Fig.3 梁せん断力―塑性率関係と終局状況 (Relationships between Shear Force and Ductility Factor of Beam and Photo of Fracture)

Ⅲ. ヒンジリロケーション架構

RC 建物の耐震設計では、梁の降伏ヒンジを柱フェイス位置に計画 するのが一般的であるが、降伏ヒンジ位置を柱フェイスから遠ざけ ることにより、柱梁接合部の損傷低減による継続使用性の向上や降 伏ヒンジ位置(損傷部)の補修性の向上が可能になる。ここで示す ヒンジリロケーション架構は、両端部を 180°折り曲げフックとし た添え筋により柱梁接合部と梁端部を補強する工法であり、添え筋 の長さによって、梁の降伏ヒンジ位置をコントロールする(Fig.4)。

本架構の構造性能確認実験を行った。試験体形状・配筋を Fig.5 に示す。試験体は高層 RC 造建物の低層階を対象とした縮尺約 1/2 の桂粱架構2体で,180°フック付き添え筋の有無をパラメータとし た。RB 試験体は添え筋を設けたヒンジリロケーション架構,ST 試験 体は添え筋のない通常の RC 架構である。梁曲げ耐力時に両試験体の 柱梁接合部への入力せん断力が同等となるように,梁主筋径を調整 した。加力は柱上下端をピン・ローラーで支持し,柱に軸力比 0.1 の一定軸力を加えつつ,左右の梁に逆対象せん断力を作用させた。 加力点変位をスパンで除した層間変形角 Rs で制御する正負交番繰 り返し載荷とし,Rs=1/800rad.~1/12.5rad.まで漸増させた。

実験結果における梁せん断力-層間変形角関係を Fig.6 に示す。 図中の写真は、Rs=40×10⁻³rad.時の接合部損傷状況である。赤色一 点鎖線は梁曲げ強度時せん断力の計算値であるが、実験結果は両試 験体とも、これと良く対応した。ST 試験体は Rs=20×10⁻³rad.で最 大耐力に達したのに対し、RB 試験体では Rs=36×10⁻³rad.まで緩や かに耐力上昇を続けた。なお、曲げ強度の算定に当たっては ACI 法 ⁷⁾を採用し、ST 試験体は柱フェイスを、RB 試験体は添え筋の 180° フックの折り曲げ起点を危険断面位置と仮定した。また、ST 試験体 の梁せん断力-層間変形角関係は Rs=20×10⁻³rad.を超える大変形 時において、スリップ性状が確認されたが、RB 試験体では紡錘形の 履歴性状になり、エネルギー吸収能が向上した。Rs=40×10⁻³rad.時 の接合部損傷状況の写真により、ST 試験体に比べて RB 試験体のひ び割れ幅が小さくなっていることも確認できる。添え筋が接合部の ひび割れの拡幅を抑制し、損傷低減に寄与したものと考える。

添え筋のない ST 試験体は柱フェイス位置から主筋が降伏したが, 添え筋のある RB 試験体では, Fig.7 に示すように柱フェイス位置よ りも危険断面位置のひずみが大きく,ほぼ想定した位置で主筋が降 伏した。また,柱フェイス位置に向かいひずみが減少する傾向を示 した。このことより,添え筋が有効に機能して,降伏ヒンジが柱フ

-5000

-600

-400

-200

Fig.7 梁上端主筋のひずみ分布

(Strain of Upper Reinforcing Bar)

0

材軸方向位置 (mm)

200

400

600

ェイス位置から梁スパン中央側に移動したことを確認した。

本ヒンジリロケーション架構により, RC 骨組における柱梁接合部 の損傷が低減し, 骨組変形性能が向上することを確認した。地震後 の建物継続使用性や補修性の向上策として有効と考える。

Ⅳ. 高性能免震構造

免震構造に期待される効果は、地震時の建物の安全性向上と建物 機能の維持である。これらはいずれも上部構造の加速度低減によっ てもたらされるが、現状の免震構造では極稀に発生する地震動入力 に対して、上部構造の加速度は150~200 cm/s² に低減される程度で ある⁸⁾。本免震システムは、上部構造の加速度を50 cm/s² 程度に抑 え、免震層水平変位は通常免震構造と同程度の45 cmとすることに より、建物使用者の不安感や恐怖感を軽減して安心空間をもたらす、 より高性能な免震システムである。

本システムを設計するに当たり, Fig.8 に示す振動特性を設定した。告示3 波の Sa-Sd 曲線の包絡線に対して,加速度 50 cm/s² と 水平変位 45 cm の2 つの直線で囲まれた性能範囲を満足する振動特 性として等価周期 6~8 秒,等価減衰定数 30%を目標とする。

Fig.9に提案システムを構成する免震部材の概要を示す。等価周 期 6~8 秒という長い周期を達成するために,弾性ゴムと摩擦係数 の小さいすべり支承または転がり支承(以下,すべり・転がり支承) を併用したシステムを採用した。弾性ゴムは,鉛直荷重を支持せず システムの全水平荷重を負担する。すべり・転がり支承は,全ての 鉛直荷重を支持することとし,積層ゴム(以下,弾性体)と直列に 組合せて使用する。弾性体との組合せについては,すべり支承には 弾性すべり支承として一般的な製品があるが,転がり支承について は今のところ実製品は存在しない。等価減衰定数30%を満足する免 震部材としてオイルダンパーを選定した。ダンパーの減衰力が増大 すると,上部構造の加速度が大きくなり長周期化の効果が十分に得 られないことが懸念される。そこで、ダンパーに弾性ばねを直列に 設置し,必要な減衰力を確保して衝撃的な力を緩和する構造とする。

提案システムの応答特性を確認するため,免震モデル建物を対象 とした地震応答解析を行った。解析モデルは、上部構造の各階を適 宜集約した6 質点系モデルとし、弾性ゴムを線形ばね、すべり・転 がり支承を完全弾塑性モデル、直列ばね付きオイルダンパーをマッ クスウェルモデルでそれぞれモデル化した。上部構造は、免震層上 部の質点(1F)を490ton、2~6 層(2F~6F)の各質点を980tonと し、基礎固定時1次周期が3秒となるように各層の水平剛性を設定 した。上部構造の復元力特性は線形とし、基礎固定時1次周期に対 して2%の内部粘性減衰を考慮した。

解析におけるパラメータは、すべり・転がり支承の摩擦係数 μ と 弾性体水平剛性 ksおよびオイルダンパー直列ばねである。解析ケー スを Table 1 に示す。入力地震動は八戸 NS 波を選定し、最大速度 50cm/s で規準化した。

解析による応答最大水平加速度と応答最大水平変位の高さ方向 の分布をFig. 10 に示す。ケース1 に比べて、ケース 2~6 ではいず れも加速度が減少している。変位は逆の傾向となり、ケース 2~6 の 応答値はケース1 よりも大きくなった。Fig. 11 に、ケース1 と 6 に ついて、1F と 6F の水平加速度の時刻歴を示す。ケース1 では 1F に パルス的な加速度が数か所で見られ、その値は 100~150cm/s² とな

Table 1 解析ケース一覧										
	(Analysis Cases)									
	ケース	μ	ks	直列 ばね						
	1	0.01	1.0	<i>t</i> 1						
	2	0.01	0.1	ふし						
	3		1.0	<i>t</i> 31						
•	4	0.005	0.1	なし						
	5	0.005	1.0	あり						
	6		0.1	a) •)						

(Time Histories of Response Acceleration)

っている。これは、変形の方向が切り替わる際に生じる過渡的な応答(過渡応答)であり、すべり・転がり支承弾性体の剛性の影響に よって生じるものである。一方、ケース6では過渡応答がほとんど 認められず、加速度のピーク値は50cm/s²程度まで低減されるとと もに、波形全体が滑らかになっている。

本解析的検討により、すべり・転がり支承の摩擦係数および弾性 体の剛性を小さくすること、オイルダンパー直列ばねを考慮するこ とにより、上部構造の加速度を 50 cm/s² 程度に低減できることを確 認した。

提案する本免震システムは、大地震に対する安全性を確保するだ けでなく、安心感も提供できるものである。

Ⅴ. ウォータージェットを用いた杭頭目視調査技術

地震後の建物継続使用性を判断するためには, 躯体の健全性を確 認する必要がある。杭の場合,地下に隠れており,その調査はかな り大がかりになる。従来は杭頭を露出させる必要があったが,今回, ウォータージェットを利用して,露出させることなく杭頭を目視調 査できる技術を開発した。

基本的な調査手順をFig.12,および以下に示す。

- ① 耐圧盤に φ 125 程度の孔を開け、調査機器を設置する。
- ② WJ(ウォータージェット)ノズルをロッドに取付けて鉛直用 噴射口にて鉛直掘削を行う。
- ③ WJノズルを水平噴射口へ切り替えて水平掘削を行う。
- ④ 吸引ポンプを利用し,掘削土を排出する。

その後,杭体洗浄して撮影用カメラ(有効画素数1800万画素)を 孔壁内部へ降ろし撮影する。調査終了後は排土にセメント等を混合 し埋め戻す。耐圧盤に開けたφ125の孔はモルタルで埋めて完了と なる。カメラによる撮影高さを,Fig.13に示すとおり杭頭部から約 1000mm までとした実際の撮影映像をPhoto1に示す。杭頭部の損傷 をカメラにて目視確認した結果,骨材は明確に分散していたことか ら,コンクリートは密実であることがわかった。また,ジャンカの ような施工不良個所や損傷の疑いがあるひび割れは確認されなかっ た。

本調査方法は調査完了後もφ125の孔の跡しか残さないため,地 震後の杭頭調査における有効な技術となることが期待される。

Ⅵ. おわりに

地震時の耐震安全性の向上,地震後の建物継続使用性や補修性の 向上を目指した CFT 柱・水平リブ付鉄骨梁接合部の性能向上技術, RC 造ヒンジリロケーション架構およびウォータージェットを用い た杭頭目視調査技術,地震時の居住性(安心感)の向上を目指した 高性能免震システムについて述べた。建築の耐震・制震・免震分野 において,建物の社会インフラとしての持続可能性を高める取り組 みは今後も進展を見せるものと期待される。さらには,環境配慮の 観点からの部材リユース⁹⁰への取り組みや,「レジリエント(被害を 最小限に留めるとともに,被害からいち早く立ち直り元の生活に戻 らせる)」な建物の実現に向けた取り組みもすでに始まっている。

Fig.13 調査断面図 (Survey Cross-sectional View)

Photo 1 杭体表面 (Surface of Pile)

参考文献

- 1)小堀鐸二;制震構造 理論と実際 新版, 鹿島出版会, 2014.10.
- 2)澤本佳和ほか; CFT 柱・水平リブ付き鉄骨梁接合部の多数回繰り返し性能向上に関する研究,日本建築学会大会学術講演梗概集, 2016.8, pp.1241-1242.
- 日向大樹ほか;添え筋ヒンジリロケーション架構の構造性能, 日本建築学会大会学術講演梗概集,2016.8, pp.433-434.
- 4)高岡栄治ほか;地震入力の遮断を追求した免震構造(その1) 提案システムの概要,日本建築学会大会学術講演梗概集,2016.8, pp. 639-640.
- 5) 掛谷誠ほか; ウォータージェットを利用した杭頭目視調査, 日本建築学会大会学術講演梗概集, 2014.9, pp.453-454.
- 6)建築研究所;長周期地震動に対する超高層鉄骨造建築物の耐震 安全性に関する検討,建築研究資料160号,2014.7.
- 7) American Concrete Institute : Building code requirements for structural concrete (ACI 318-11) and commentary, 2011.
- 8)大宮幸ほか;免震建物の調査研究-公表されたデータに基づく 免震建物の傾向把握-,日本建築学会大会学術講演梗概集, 2006.9, pp.513-514.
- 9)日本建築学会;鋼構造環境配慮設計指針-部材リユース,2015.